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Abstract

The Indian Ocean dipole (IOD) is a remarkable interannual variability in the tropical Indian
Ocean. The improved prediction of IOD is of a great value because of its large socioeconomic
impacts. Previous studies reported that both El Nino-Southern Oscillation (ENSO) and South
China Sea summer monsoon (SM) play a dominant role in the western and eastern pole of the
IOD, respectively. They can be used as predictors of the IOD at 3 month lead beyond
self-persistence. Here, we develop an empirical model of multi-factors in which the western pole is
predicted by ENSO and persistence and the eastern pole is predicted by SM and persistence. This
new empirical model outperforms largely the average level of the dynamical models from the
North American multi-model ensemble (NMME) project in predicting the peak IOD in boreal
autumn, with a correlation coefficient of ~0.86 and a root mean square error of ~0.24 °C.
Furthermore, the hit rate of positive culminated IOD in this new empirical model is equivalent to
that in current NMME models (above 65%), much higher than that for negative culminated IOD.
This improvement of skill using the empirical model suggests a perspective for better

understanding and predicting the IOD.

1. Introduction

The Indian Ocean dipole (IOD) is a dominant inter-
annual variability in the tropical Indian Ocean, char-
acterized by a dipole pattern in sea surface temper-
ature (SST) anomalies between the tropical western
and eastern Indian Ocean (Saji et al 1999, Webster
et al 1999). Numerous extreme weather and climate
events with large socioeconomic impacts are attrib-
uted to the IOD, such as the extreme hot, droughts,
and floods in Indian Ocean rim countries (Ashok et al
2003, 2004, Guan and Yamagata 2003, Cai et al 2009,
2011, Chen et al 2020, Duan et al 2020, Zhou et al

© 2023 The Author(s). Published by IOP Publishing Ltd

2021). Therefore, improving the prediction skill of the
IOD would benefit the affected regions and thereby
mitigate local socioeconomic losses.

Continuous effects have been made to improve
the prediction of IOD using the state-of-the-art
coupled models at seasonal time scales in past dec-
ades (Wajsowicz 2005, 2007, Luo et al 2007, 2008,
Zhao and Hendon 2009, Shi et al 2012, Zhu et al
2015, Liu et al 2017, Zhao et al 2019, 2020, Song et al
2022). The dynamic forecasting skill of IOD events
is typically limited to 3—4 months ahead (approxim-
ately one season) due to the strong boreal winter—
spring ‘predictability barrier’ (Shi et al 2012, Liu et al
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2017) though some individual strong IOD events
(i.e. 2006 and 2019) were successfully predicted two
seasons in advance (Luo et al 2008, Doi et al 2020).
Some studies found that the statistical or dynamic
climate models that capture well the IOD-EI Nino-
Southern Oscillation (ENSO) relationship exhibit a
superior predictive skill of the IOD, while the ENSO-
independent IOD events seem to have a lower predict-
ability (Song et al 2008, Zhao and Hendon 2009, Shi
et al 2012, Yang et al 2015, Zhao et al 2020).

Many empirical models have been implemented
to predict the IOD events. For example, multiple
linear regression and canonical correlation analysis
have been used in previous studies to predict the
Indian Ocean SST (Kug et al 2004, Dommenget and
Jansen 2009, Chen et al 2022). A simple stochastic-
dynamical model forced by forecasted ENSO condi-
tions can predict the IOD well up to 6 month ahead
(Zhao et al 2019, 2020). The above studies demon-
strated that the predictability of IOD beyond per-
sistence is largely influenced by ENSO. Recent stud-
ies suggest that the South China Sea summer mon-
soon (SM) is another climate factor affecting the IOD
development (Zhang et al 2018, 2021). Furthermore,
the SM and ENSO have strikingly different effects
on the eastern and western pole of the 10D, with
the dominant contributions of ENSO to the west-
ern pole and SM to the eastern pole, respectively
(Zhang et al 2019). This leads us to ask whether the
IOD prediction skill could be improved if consider-
ing both the preceding SM and ENSO signals, espe-
cially at its western and eastern poles. In this study, an
empirical model of multi-factors (i.e. the SM, ENSO,
and self-persistence) will be established using mul-
tiple linear regression, and their predictive skill of the
IOD events is further assessed and compared with
the North American multi-model ensemble (NMME)
forecasting system.

2. Datasets and methodology

2.1. Datasets

The SST observations used here were obtained from
the improved Extended Reconstructed SST version 5
on a 2° x 2° grid for the period 1948-2022 (Huang
et al 2017). The NMME project is generally used to
improve prediction skill through the error compens-
ation and greater consistency and reliability between
models (Hagedorn et al 2005, DelSole et al 2014). For
comparison, the 12 models from the NMME project
were utilized during 1982-2018 (Kirtman et al 2014),
including the hindcasts (1982-2010) and real-time
forecasts (2011-2018). Each model consists of 4-20
ensemble members, and the forecasts are provided at
lead times from 1 month to 4 months. In addition
to the ensemble mean forecast characteristics of each
individual model, the grand multi-model ensemble
(MME) forecasts are employed with equal weight
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given to each individual model. Table S1 summarized
the shortened model names, time period, ensemble
size, and lead months for these 12 models. Since
the NMME forecast is initialized at the beginning of
each month, the lead time is defined as the num-
ber of months between the latest available observed
data and the center of the 3 month running hind-
casting target period. For example, if the latest avail-
able observed data is January, the forecast for the
January—February—March season has 1 month lead,
for February—March—April season 2 month lead, and
so on. Monthly anomalies are calculated with respect
to climatology from January 1982 to December 2010
in both the observations and each individual NMME
model, and the linear trends were removed from the
datasets.

Previous studies (e.g. Shi et al 2012, Liu et al
2017, Doi et al 2020, Zhao et al 2020) had repor-
ted the predictive skill of the IOD based on the IOD
mode index, which is defined as the area-averaged
SST anomalies in the western Indian Ocean (50°—
70° E, 10° S—10° N) minus those in the eastern Indian
Ocean (90°-110° E, 10° S-0°). The Nino-3.4 (here-
after as N34) index, the area-averaged SST anomalies
over 120°-170° W and 5° N-5° §, is used to describe
ENSO.

The SM index was calculated as the area-averaged
summer dynamical normalized seasonality for the
925 hPa wind field within the South China Sea
monsoon domain (100°-125° E, 0°-25° N), which
is available at http://lijianping.cn/dct/page/65578 (Li
and Zeng 2002, 2003, Li et al 2010). The intensity of
the SM index is given by:

[IV1— Vi, n||

(5: =
VIl

-2,

where ||*|| is 2 norm on the monsoon domain of
integration, V1 and V represent January climatolo-
gical wind vector and the mean of January and July
climatological wind vectors, respectively, and Vi, n
denotes monthly wind vectors in the mth month of
the nth year.

The significance of correlations between variables
X and Y was tested using a two-tailed Student’s ¢-test.
The effective number of degrees of freedom (Ne) is
approximately estimated as follows (e.g. Pyper and
Peterman 1998, Li et al 2013):

L2 iN
Neff N N P N

where N is the total length of the time series, pxx(7)
and pyy(j) denote autocorrelations of two time series
X and Y, respectively.

To compared with the NMME results, the same
study period (1982-2018) for the observations is also
chosen. The seasonal mean in this study is averaged

(Npyr(j),
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for boreal JJA (June—July—August), JAS (July—August—
September), ASO (August-September—October),
SON (September—October—November), and OND
(October—November—December).

2.2. Methodology

The empirical model used here is established through
holdout method (Devroye and Wagner 1979).
Holdout (simple) validation depends on a single
partitioning of the data. The time series is divided
into two parts: the training period is from 1948 to
1981 and the hindcasting period is from 1982 to
2018. As for a single predictor variable, the model is
trained during the training period though the linear
regression of the predictor variable x three months
earlier on the dependent variable z. Though this
training model, we can get the regression coefficient
a and constant g. Thus, the forecast model can be
expressed as:

zi=fi(x) =ax;_s+ g, (1

where is f;(x) a function fitted to the predictor variable
x. This gives us the relation between the dependent
variable z at the ith month and the predictor variable
x at (i —3)th month (x;_3) during the hindcasting
period.

With two predictor variables, we can also con-
struct a training model by using binary regression of
the predictor variables x and y 3 months earlier on
the dependent variable z during the training period.
Thus, the forecast model is established through the
regression coefficients a and b, and the constant g in
this training model, which is shown as follows:

zi=fi(x,y) = axi_3 +by;_3+¢g, (2)

where f;(x, ) is a function fitted to the predictor vari-
ables x and y. This gives us the dependent variable z
at the ith month related to predictor variables x and
y at the (i — 3)th month (x;,_3 and y;_3) during the
hindcasting period.

Similar to the model that includes two predictor
variables, the forecast model based on three predictor
variables is constructed as follows:

zi=fi(x,y,p) =axi_3 +byi_s+cpi_s+g, (3)

where fi(x,y,p) is a function fitted to the predictor
variables x, y and p. This gives us the dependent vari-
able z at the ith month related to predictor variables x,
y and p at the (i — 3)th month (x;_3, y;_3 and p; _3)
during the hindcasting period.

The real predictor variables used here are the
standardized SM, ENSO (represented by N34),
and self-persistence (PS) of the IOD three months
earlier, and the dependent variable is IOD. The
SM + N34 + PS forecast models are built as follows:

Vi = aSM;_3 + bN34;_3+cPS;_3 + g, (4)

3
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where y; is the IOD at the ith month, SM;_;,
N34;_3 and PS; _; is the standardized SM, ENSO, and
self-persistence of the IOD at the (i — 3)th month,
respectively. a, b, and c are the regression coefficients
and g is a constant.

According to the previous studies, the SM is more
important in the eastern pole of the IOD and ENSO
is more important in the western pole of the IOD
(Zhang et al 2018, 2019). A new empirical model
(hereafter as RC-model) is reconstructed as follows:

Step 1. The western pole of the IOD is first pre-
dicted by N34 + PS three months earlier using binary
regression;

Step 2. The eastern pole of the IOD is pre-
dicted by SM + PS three months earlier using binary
regression;

Step 3. The predicted IOD is defined as the
difference between the western pole predicted by
N34 + PS model in Step 1 and eastern pole predicted
by SM + PS model in Step 2.

The leaving-one-out cross-validation is applied to
estimate the stability of the RC-model according to
the previous studies (Grantz et al 2005, Regonda et al
2006, Wang et al 2019), which is briefly introduced as
follows: (1) given a time series with length L, one time
point is chosen to be a hindcasting point, and the rest
of the time series (length: L — 1) is used to build the
prediction model using regression analysis. (2) The
ensemble hindcast is produced until each time point
of the given time series redoes the step (1).

Following Shi et al (2012) and Zhao et al (2020),
we evaluate the ability of the models to predict three
categories of 10D events: (i) positive IOD events in
which the IOD amplitude in SON exceeds 1 standard
deviation, (ii) negative IOD events in which the IOD
amplitude in SON is less than —1 standard deviation,
and (iii) neutral IOD events that fall in between. The
contingency table (table S2) is made for the occur-
rence of observed and predicted IOD events using the
SON DMI for each individual model. The hit rate
(HR) for correctly forecasting the occurrence of a pos-
itive/negative IOD event is defined as:

a
HR,osi = ———— x 100%, 5
P a+b+c @ ®)

i
HRyega = — X 100%. 6
8 gt h+i 0 ©

The false alarm rate (FAR), which is a measure of
incorrectly forecasting an IOD event when in reality
a neutral event occurred, is defined as

d+f
d+e+f

FAR = x 100%. (7)

See table S2 for the definitions of the letters a—i.
Based on the threshold, 11 (a + b + ¢) positive IOD
events, 10 (g + h + i) negative IOD events, and 16
(d 4+ e + f) neutral IOD events occur in SON during
1982-2018.
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Figure 1. Relationships of the South China Sea summer monsoon (SM) and El Nino-Southern Oscillation (N34) during boreal
summer (June—July—August, JJA) with the seasonal mean Indian Ocean dipole (I0D) index from JJA to OND
(October—-November—December). (a) For IOD index, (b) for eastern pole of the IOD, and (c) western pole of the IOD. (d) As (a),
but for partial correlations between the SM (N34) and IOD after removing JJA N34 (SM) signals. (e)—(f) As (a), but for western
and eastern poles of the IOD. Black dots in (a)—(f) indicates the correlation (partial correlation) coefficients beyond 99%

confidence level, respectively.

3. Results

3.1. Connections of the SM and ENSO to the IOD
The relationships of the IOD with SM and ENSO
are first investigated (figure 1). The SM and ENSO
are significantly correlated with the IOD from JJA
to OND during 1948-2018. However, there exist dis-
crepancies in the relation of the SM and ENSO with
the eastern and western poles of the IOD (figure 1(a)).
The western pole of the IOD has a larger correla-
tion coefficient with JJA ENSO than with the SM
(figure 1(b)). In contrast, the correlation coefficient
of the western pole of the IOD with SM is significant
from JJA to OND, while that with JJA ENSO is insig-
nificant except for ASO (figure 1(c)). After removing
the SM (JJA ENSO) signal, the correlation coefficient
of IOD with JJA ENSO (SM) is still significant from
ASO (JJA) to OND, and the eastern (western) pole
of IOD is only significantly correlated with the SM
(JJA ENSO) (figures 1(d)—(f)). These results imply
that there is a closer relation of eastern and western
pole of the IOD to the SM and ENSO, respectively.
From the spatial pattern of the SST anomalies
in the tropical Indian Ocean associated with the SM
and JJA ENSO, we find that significant cold SST

anomalies associated with the SM mainly exist in the
tropical eastern Indian Ocean from JJA to SON based
on the composite analyses of the ten positive IOD
years (table S3), with weak warm SST anomalies in
the tropical western Indian Ocean (figures S1(a) and
(b)). Compared to the SM, the positive SST anom-
alies associated with JJA ENSO are clearly observed
in the tropical western Indian Ocean, accompan-
ied with weak negative SST anomalies in the trop-
ical southeastern Indian Ocean, especially in SON
(figures S1(c) and (d)). The tropical Indian Ocean
SST anomalies in JJA and SON associated with both
the SM and JJA ENSO are much stronger than those
purely associated with either the SM or JJA ENSO
(figures S1(e) and (f)), indicative of a synergistic effect
of the SM and ENSO (Li et al 2019, Zhang et al 2019).
The IOD in JJA intensified by the SM and JJA ENSO
tends to contribute to the peak IOD in SON through
strong self-persistence (figures S1(g) and (h)). These
results support the findings that the SM and ENSO
have remarkably different effects in the development
and peak period of the IOD and its eastern and west-
ern poles (Zhang et al 2019).

The explained percentage is estimated to demon-
strate the aforementioned results (section S1 and
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Figure 2. Explained percentage (%) of the monthly mean SST anomalies by the SM (light blue bars), ENSO (N34, blue bars),
self-persistence (PS, orange bars), and both SM and ENSO (yellow bars) for the (a) IOD, (b) western pole and (c) eastern pole of
the IOD in September, October, and November obtained using the preceding (3 months earlier) contributors’ during positive
years (table S3). (d)—(f) Same as (a)—(c), but for the partial explained percentage by the JJA SM-independent ENSO (SM®, dark
blue bars), ENSO-independent SM (N34%, red bars), self-persistence-independent SM (PS*, green bars)
self-persistence-independent ENSO (PS®, grass green bars), self-persistence-independent SM and ENSO (PS%, dark green bars).

Wang et al 2019). The mean percentage of SON
IOD explained by the SM (~33%) is relatively lar-
ger than that of JJA ENSO (~29%), and this is also
true for the SM-independent JJA ENSO (17%) and
JJA ENSO-independent SM (~13%) (figures 2(a) and
(d)). Further analysis illustrates sharp distinctions in
the eastern and western pole of the IOD. For the
western pole of the IOD in SON, the contributions
explained by the SM are nearly half of JJA ENSO,
while for eastern pole of the IOD in SON, the con-
tributions explained by the SM exceed three times
of those by JJA ENSO, even reaching twelve times in
November (figures 2(b) and (c)). Similar results can
be obtained for the independent contributions of the
SM and JJA ENSO (figures 2(e) and (f)).

The combined explained percentage of the SM
and JJA ENSO are nearly ~45%, larger than that of
either factor alone (~33% and ~29%) but weaker
than that of self-persistence (~56%) of IOD in JJA
(figure 2(d)). After removing the SM and JJA ENSO
signals, the mean explained percentage of the self-
persistence of JJA IOD has been reduced by more
than half (figure 2(d)). The independent explained
percentage of the self-persistence of JJA IOD (both
removing SM and JJA ENSO) is equivalent to that
of the JJA ENSO-independent SM (SM-independent

JJA ENSO) in the western (eastern) pole of SON IOD
(figures 2(e) and (f)). Therefore, the effects of the pre-
ceding SM, ENSO, and self-persistence in JJA on SON
IOD are not negligible, and these three factors can be
used as predictors for the IOD, especially at peak sea-
son in SON.

3.2. Prediction of the IOD based on empirical and
NMME models

Previous studies have revealed the relative roles of
the SM and ENSO on the IOD development, espe-
cially in its the eastern and western poles (Zhang et al
2018, 2019, 2021). The SM mainly affects the east-
ern pole of the IOD through the regional Hadley over
the Western North Pacific and Maritime Continent,
and the Walker circulation serves as the atmospheric
bridge linking ENSO and western pole of the IOD
(Zhang et al 2019). When the IOD events are purely
linked to the SM, the anomalous regional Hadley
circulation induced by the SM reinforces the east-
ern pole of IOD, but with little effect on the western
pole of the IOD, which corresponds to the stronger
eastern pole of the IOD. On the contrary, when the
IOD events are only associated with ENSO, the sig-
nificant Walker circulation is observed over the trop-
ical Atlantic Ocean, but with casual signals over the
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line with dots), and SM + N34 + PS model (orange thick line with dots). (c)—(f) Same as (a), (b) but for but for western pole and

eastern pole of the IOD.

tropical Pacific Ocean. This leads to the stronger west-
ern pole of the IOD. As the SM and ENSO co-occur,
the eastern pole and western pole of the IOD are both
intensified, leading to the stronger IOD events (Zhang
et al 2019). Overall, the intensity of the eastern pole
and western pole of the IOD are mainly affected by the
SM and ENSO via atmospheric bridges, respectively.

Based on these possible physical connections with
the preceding (3 months earlier) SM, ENSO (repres-
ented by N34), as well as the self-persistence (here-
after as PS) of the IOD, new physics-based empirical
models (the SM + PS, N34 + PS, and SM + N34 + PS
models) for the IOD are established. The predicted
skill of the SM + N34 + PS model for the IOD is first
assessed by comparison with single-factor model (the
PS model) and double-factors models (the SM + PS
and N34 + PS models).

These empirical models are constructed using a
holdout method (section 2.2). In the development
periods (JAS and ASO), the prediction skill of the
SM + N34 + PS model is nearly equivalent to that
from the single-factor model (PS) and double-factors
models (the N34 + PS and SM + PS), and the
former model outperforms largely the latter mod-
els at the peak (SON) and decay (OND) seasons
(figure 3(a)). For the target season, the culminated
IOD in SON predicted by the SM + N34 + PS model
exhibits a highest correlation (~0.83) and lowest root

mean square error (RMSE, ~0.27 °C), superior to
the double-factors N34 + PS model (correlation coef-
ficient of 0.8, RMSE of 0.29 °C), SM + PS model
(correlation coefficient of 0.76, RMSE of 0.32 °C),
and PS model (correlation coefficient of 0.7, RMSE of
0.35 °C) (figures 3(a) and (b)). Moreover, the declin-
ing rate of the SM + N34 + PS model is lowest with a
value of ~12% at the target seasons compared to the
single-factor model (PS) and double-factors models
(the N34 + PS and SM + PS) (figure 3(a)). These
results indicate that the SM + N34 + PS model has
higher prediction skill for the IOD relative to single-
or double-factors models.

For the western pole of the IOD, the N34 + PS and
SM + N34 + PS models perform better with high cor-
relation coefficient and low RMSE owing to involving
ENSO signals (especially after ASO), whereas the PS
and SM + PS models show a sharp drop in terms
of correlation coefficient and RMSE due to relatively
poor persistence of SST in the tropical western Indian
Ocean (figures 3(c) and (d)). On contrary, these four
models show equivalent prediction skill in predict-
ing the eastern pole of the IOD due to the strong
self-persistence of SST in the tropical eastern Indian
Ocean (figures 3(e) and (f)). It is noted that the PS
and SM + PS models show relative higher prediction
skill than the N34 + PS and SM + N34 + PS models
at the decay season in OND, suggesting that the ENSO
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employed.

may be conducive to the decay of the eastern pole of
the IOD (figures 3(e) and (f)).

The significance in the improvement between the
pair models among the SM + N34 + PS model and
PS, N34 + PS, and SM + PS models (section S2 and
figure S2). Compared to the PS model, the improve-
ment of the SM + PS, N34 + PS, and SM + N34 + PS
models is significant for the IOD and its western pole
during SON and OND (figure S2). For the eastern
pole of the IOD, the two- and three-factors models
are significant relative to the PS model besides the
N34 + PS in SON, while the reversed results occur in
OND (figure S2). This is because the persistence in the
eastern pole of the IOD in SON is partially explained
by the SM and ENSO may play a damping role in
the IOD decay phase during OND. These results fur-
ther verify the strikingly distinct roles of the SM and
ENSO in predicting the IOD, especially in its eastern
and western poles.

The NMME system has been widely used to assess
the predictability of the IOD (Zhao et al 2019, 2020,
Ling etal 2022, Lu et al 2022). Model predictable skills
for the IOD are compared for the SM + N34 + PS
model and 12 NMME models. The MME (aver-
aged 12 NMME models) forecast exhibits relatively
superior skill in predicting the IOD than most indi-
vidual model in terms of both correlation coeffi-
cient and RMSE (figure 4). The IOD predicted by the
SM + N34 + PS model is superior to that predicted
by the MME in the development and peak phases of
the IOD from JAS to SON (figure 4).

In fact, the SM is more important in the eastern
pole of the IOD and ENSO is more important in the
western pole of the IOD (Zhang et al 2019). Thus, we

reconstruct a new empirical model (hereafter as RC-
model) in which the IOD is obtained as the difference
between the western pole predicted by N34 + PS
model and eastern pole predicted by SM + PS model
(section 2.2). The robust stability of this RC-model
in predication performance is demonstrated by using
leaving-one-out cross-validation (figure S3). This
RC-model has the highest correlation coefficient and
lowest RMSE, improving the prediction skill of the
IOD at the development and peak seasons from JAS
to SON (figure 4). The correlation coefficient (~0.86)
and RMSE (~0.24 °C) between the RC-model and
observations for the culminated IOD at a lead time
of 3 months is nearly equivalent to that predicted
by the current machine learning methods (Ratnam
et al 2020, Liu et al 2021, Ling et al 2022), demon-
strating the advantage of the RC-model relative to
the SM + N34 + PS model and MME. However, the
MME is slightly better than the empirical model in the
performance of the decay phase in OND (figure 4).
One of the reasons for the low prediction skill in
OND for the SM + N34 + PS model is because the
early winter is a transitional period for the most IOD
events with the lowest signal-to-noise ratio (Zhao et al
2020).

To further document the skills for each indi-
vidual IOD event, we use one standard deviation
threshold to categorize the observations, RC-model,
and dynamics model forecasts. The hit rate and the
false alarm rate for the RC-model forecasts are shown
in figure 5. The RC-model forecast performs bet-
ter in terms of hit rate for positive culminated IOD
in SON, much higher than that in MME and half
of dynamical models (figure 5). By contrast, the hit
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frequency that use RC-model forcing of occurrence of positive, negative, and neutral culminated events, respectively.

rate for negative culminated IOD of MME is equival-
ent to the RC-model though some dynamical models
(CanSIPSv2, CMCl1-CanCM3, and GFDL-CM2pl-
aer04) outperform slightly (figure 5). Moreover, the
hit rate for negative culminated IOD is lower than
that for positive culminated IOD in both the RC-
model and dynamical models; that is to say, there
is asymmetric feature: hit rates for positive culmin-
ated IOD events being in the top-ranked group but
for negative culminated IOD events hit rates being
in the poor performance group. Compared to the
hit rate, the false alarm rate of the MME performs
best in all individual dynamical models, much bet-
ter than that in the RC-model forecast (figure 5).
Opverall, these results suggest the advantage of the RC-
model in predicting the IOD in SON at 3 month lead,
which has potential value of operational applications
for Climate Prediction Department.

4, Discussion and conclusions

Some extreme weather and climate events and relev-
ant strong socioeconomic impacts are attributed to
the IOD, and the prediction of the IOD is a challen-
ging scientific issue since it was discovered. Previous
studies reported that the culminated IOD is signific-
antly correlated with both the SM and ENSO three
months earlier, and the joint explained percentage of
the preceding (3 months earlier) SM and JJA ENSO
is nearly 20% higher than that of either factor alone.
Moreover, the SM and ENSO mainly contribute to
the eastern and western pole of the IOD, respectively.
Therefore, the preceding (3 months earlier) SM and
ENSO can be used as the crucial predictors for the cul-
minated IOD beyond persistence. Here, we develop a
multi-factor empirical model based on the preceding

SM, ENSO as well as the self-persistence to predict
the IOD events during the developing and peaking
seasons.

The western pole of the IOD is mostly impacted
by the ENSO and the eastern pole of the IOD is mainly
dominated by SM (Zhang et al 2018, 2019, 2021).
Thus, a new RC-model is defined as the western pole
predicted by N34 + PS model minus the eastern pole
predicted by SM + PS model. This RC-model exhib-
its a highest skill in predicting the culminated IOD
with the high correlation coefficient (~0.86) and low
RMSE (~0.24 °C) at a 3 month lead time, super-
ior to the single- and multi-factor empirical models
(PS, N34 + PS, SM + PS, and SM + N34 + PS).
Moreover, this RC-model shows an advantage relative
to the average skill level of dynamical NMME models,
with a higher hit rate for the positive culminated IOD.

The regression method used in this study may be
either simultaneous or at some fixed lag time due to
the diversity of ENSO in the amplitudes, temporal
evolution, and spatial patterns (Capotondi et al 2015,
Zhao et al 2021), and this leads to the influence of pre-
ceding ENSO signals on the culminated IOD may be
not completely removed. Actually, the spring ENSO
signals have the bigger influence on the relation-
ship between the JJA ENSO and SON IOD than the
preceding winter ENSO signals (figures S4(a)—(h)).
However, there remains a significant dipole struc-
ture associated with JJA ENSO after removal of the
preceding spring ENSO (figures S4(i)). These results
suggest the significant influence of preceding sum-
mer ENSO on the following autumn 10D, while it
is not neglected the delayed influence of the preced-
ing spring ENSO. Therefore, the contributions of the
ENSO isolated with the preceding season signals to
the culminated IOD should be investigated deeply,
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and the linear inverse model method may be a good
tool to achieve this goal in the future (Zhao et al
2021).

Additionally, although the RC-model is demon-
strated to be an efficient model for improved IOD
prediction, the positive IOD events have been repor-
ted to be more predictable relative to the negative IOD
events. During the prediction period of 1982-2018,
the positive IOD events always coexist with El Nino
(1982, 1985, 1994, 1997, 2006, 2015), while the four
negative IOD events (1990, 1992, 1996, 2005) occurs
without La Nina. The intensity of these pure negat-
ive IOD events predicted by the RC-model is closer to
the observation than that predicted by NMME mod-
els (figure S5), indicating the superior skill of the
empirical modelin predicting the IOD events without
ENSO. The IOD events display asymmetric variations
in the positive and negative phases (Hong et al 2008,
Caietal 2009), and the asymmetry of ENSO may have
certain contributions since the linear model transfers
the asymmetry of the ENSO forcing to the 10D dir-
ectly (Zhao et al 2020). Therefore, more effects should
be made to study the asymmetry of the IOD so as to
improve the prediction skill of IOD in both the stat-
istical and dynamical models.
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